W掺杂改性CrAlN涂层的微结构及性能
吴明晶 张国飞 王北川, 李佳 魏铁峰 陈利,
W掺杂改性CrAlN涂层的微结构及性能
Microstructures and Properties of W-Doped Modified CrAlN Coatings
CrAlN涂层 / W掺杂 / 阴极弧蒸发 / 热稳定性 / 抗氧化性 {{custom_keyword}} /
CrAlN coating / W doping / cathode arc evaporation / thermal stability / oxidation resistance {{custom_keyword}} /
[1] 刘喆人. Cr-Al-O-N和(Cr,Al)2O3涂层的结构、力学性能、热稳定性 和抗氧化性研究 [D]. 长沙:中南大学,2023.
LIU Z R. Structure, mechanical property, thermal stability, and oxidation resistance of Cr-Al-O-N and (Cr, Al)2O3 coatings [D]. Changsha: Central South University, 2023.
[2] KNOTEK O, LO¨FFLER F, SCHOLL H J. Properties of arc-evaporat⁃ ed CrN and (Cr, Al)N coatings [J]. Surface and Coatings Technology, 1991, 45(1-3): 53-58.
[3] KALSS W, REITER A, DERFLINGER V, et al. Modern coatings in high performance cutting applications [J]. International Journal of Re⁃ fractory Metals and Hard Materials, 2006, 24(5): 399-404.
[4] SPAIN E, AVELAR-BATISTA J C, LETCH M, et al. Characterisa⁃ tion and applications of Cr-Al-N coatings [J]. Surface and Coatings Tech⁃ nology, 2005, 200(5): 1507-1513.
[5] 王大辉, 吴明晶, 刘慧君 . Ti0.44Al0.56N 和 Cr0.42Al0.58N 涂层的结构与热性能研究 [J]. 硬质合金, 2020, 37(3): 189-194.
WANG D H, WU M J, LIU H J. Research on structure and thermal prop⁃ erties of Ti0.44Al0.56N and Cr0.42Al0.58N [J]. Cemented Carbide, 2020, 37 (3): 189-194.
[6] 王桂云,陈利 . Al 含量对 Cr(1-x) AlxN 涂层力学、热稳定性、抗氧化 性及耐蚀性的影响 [J]. 表面技术,2022,51(2):39-47. WANG G Y, CHEN L. Effect of Al content on the mechanical properties, thermal stability, oxidation resistance and corrosion resistance of Cr1-xAlxN coatings[J]. Surface Technology, 2022, 51(2): 39-47.
[7] 胡春 . Nb、Ta 和 B 对 CrAlN 涂层结构和性能的影响 [D]. 长沙:中 南大学, 2020.
HU C. Influence of Nb-,Ta- and B-addition on the structure and proper⁃ ties of CrAlN coatings [D]. Changsha: Central South University, 2020.
[8] LI W Z, CHEN Q Z, POLCAR T, et al. Influence of Zr alloying on the mechanical properties, thermal stability and oxidation resistance of Cr-Al-N coatings [J]. Applied Surface Science, 2014, 317: 269-277.
[9] ROVERE F, MAYRHOFER P H, REINHOLDT A, et al. The effect of yttrium incorporation on the oxidation resistance of Cr-Al-N coatings [J]. Surface and Coatings Technology, 2008, 202(24): 5870-5875.
[10] ROVERE F, MAYRHOFER P H. Thermal stability and thermo-me⁃ chanical properties of magnetron sputtered Cr-Al-Y-N coatings [J]. Jour⁃ nal of Vacuum Science & Technology A Vacuum Surfaces and Films, 2007, 26(1): 29-35.
[11] QI D, LEI H, WANG T, et al. Mechanical, microstructural and tri⁃ bological properties of reactive magnetron sputtered Cr-Mo-N films [J]. Journal of Materials Science & Technology, 2015, 31(1): 55-64.
[12] FRANZ R, MITTERER C. Vanadium containing self-adaptive lowfriction hard coatings for high-temperature applications: a review [J]. Sur⁃ face and Coatings Technology, 2013, 228: 1-13.
[13] HANS M, BABEN M T, MUSIC D, et al. Effect of oxygen incorpora⁃ tion on the structure and elasticity of Ti-Al-O-N coatings synthesized by cathodic arc and high power pulsed magnetron sputtering [J]. Journal of Applied Physics, 2014, 116: 093515.
[14] KIMBLIN C W. Erosion and ionization in the cathode spot regions of vacuum arcs [J]. Journal of Applied Physics, 1973, 44(7): 3074-3081.
[15] JÜTTNER B. Erosion craters and arc cathode spots in vacuum [J]. Contributions to Plasma Physics, 2010, 19(1): 25-48.
[16] 许雨翔. TiAlN基多元和多层涂层的热稳定性 [D].长沙:中南大 学,2017.
XU Y X. Thermal stability and oxidation resistance of TiAlN-based mul⁃ ticomponent and multilayered coatings [D]. Changsha: Central South Uni⁃ versity, 2017.
[17] 吴明晶 王北川 张国飞等 . 阴极弧蒸发和高功率脉冲磁控溅射 TiAlN涂层的性能研究 [J]. 硬质合金, 2023, 40(3): 181-186.
WU M J, WANG B C, ZHANG G F. Research on properties of TiAlN coatings prepared by cathode arc evaporation and high-power impulse magnetron sputtering [J]. Cemented Carbide, 2023, 40(3): 181-186.
[18] PANJAN P, DRNOVŠEK A, GSELMAN P, et al. Review of growth defects in thin films prepared by PVD techniques [J]. Coatings, 2020, 10 (5): 447.
[19] MÜNZ W D, LEWIS D B, CREASEY S, et al. Defects in TiN and TiAIN coatings grown by combined cathodic arc/unbalanced magnetron technology [J]. Vacuum, 1995, 46(4): 323-330.
[20] HOLLERWEGER R, ZHOU L, HOLEC D, et al. Controlling micro⁃ structure, preferred orientation, and mechanical properties of Cr-Al-N by bombardment and alloying with Ta [J]. Journal of Applied Physics, 2016, 119(7): 2114-2122.
[21] PIERSON H O. Handbook of refractory carbides and nitrides: prop⁃ erties, characteristics, processing, and applications [M]. New Jersey USA: William Andrew/Noyes, 1996.
[22] BARNA P B, ADAMIK M. Fundamental structure forming phenom⁃ ena of polycrystalline films and the structure zone models [J]. Thin Solid Films, 1998, 317(1): 27-33.
[23] TSUI T Y, PHARR G M, OLIVER W C, et al. Nanoindentation and nanoscratching of hard carbon coatings for magnetic disks [J]. MRS On⁃ line Proceedings Library, 1995, 383: 447-452.
[24] YANG B, CHEN L, CHANG K K, et al. Thermal and thermo-me⁃ chanical properties of Ti-Al-N and Cr-Al-N coatings [J]. International Journal of Refractory Metals and Hard Materials, 2012, 35: 235-240.
[25] MAYRHOFER P, MITTERER C, CLEMENS H. Self-organized nanostructures in hard ceramic coatings [J]. Advanced Engineering Mate⁃ rials, 2005, 7(12): 1071-1082.
[26] HE L Q, CHEN L, XU Y X, et al. Thermal stability and oxidation resistance of Cr1-xAlxN coatings with single phase cubic structure [J]. Journal of Vacuum Science & Technology A, 2015, 33(6): 061513.
[27] REITER A E, MITTERER C, SARTORY B, et al. Oxidation of arcevaporated Al1-xCrxN coatings [J]. Journal of Vacuum Science & Technol⁃ ogy A, 2007, 25(4): 711-720.
/
〈 | 〉 |