W掺杂改性CrAlN涂层的微结构及性能

吴明晶 张国飞 王北川, 李佳 魏铁峰 陈利,

硬质合金 ›› 2024, Vol. 41 ›› Issue (5) : 385-391.

W掺杂改性CrAlN涂层的微结构及性能

  • 吴明晶1 张国飞1 王北川1,2 李佳1 魏铁峰3 陈利1,2
作者信息 +

Microstructures and Properties of W-Doped Modified CrAlN Coatings

  • Wu Mingjing1 Zhang Guofei 1 Wang Beichuan1,2 Li Jia1 Wei Tiefeng3 Chen Li 1,2
Author information +
History +

摘要

为探究W掺杂对CrAlN涂层微结构和性能的影响,采用阴极弧蒸发方法制备了 Cr0.36Al0.64N、Cr0.34Al0.64W0.02N和Cr0.32Al0.63W0.05N三种涂层,并使用扫描电子显微镜(SEM)、 能量色散X射线光谱仪(EDX)、X射线衍射仪(XRD)、同步热分析仪和纳米压痕仪对涂 层的成分、微观结构、热稳定性、力学性能和抗氧化性进行研究。三种涂层均为面心立 方结构,硬度随 W 元素含量的增加而提高,由 Cr0.36Al0.64N 的(28.61 ± 0.82)GPa提高到 Cr0.34Al0.64W0.02N 的(30.87 ± 0.80)GPa 和 Cr0.32Al0.63W0.05N 的(32.37 ± 1.44)GPa。W 掺杂 降低了阴极弧蒸发过程产生的“液滴”缺陷,缺陷随W含量的升高而降低。W的添加抑 制了CrAlN涂层的的热分解,提高了涂层的热稳定性。然而,W元素添加降低了CrAlN 涂 层 的 抗 氧 化 性 ,在 1 100 ℃ 恒 温 氧 化 15 h 后 ,Cr0.36Al0.64N、Cr0.34Al0.64W0.02N 和 Cr0.32Al0.63W0.05N三种涂层的氧化层厚度分别为~ 260.6 nm、~ 359.8 nm和~ 445.9 nm。

Abstract

To investigate the effect of W doping on the microstructure and properties of CrAlN coatings, coatings of Cr0.36Al0.64N, Cr0.34Al0.64W0.02N, and Cr0.32Al0.63W0.05N were prepared by using the cathodic arc evaporation method. The composition, microstructure, thermal stability, mechanical properties, and oxidation resistance of the coatings were studied by using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffractometer (XRD), simultaneous thermal analyzer, and nanoindenter. All three coatings exhibited a face-centered cubic structure. The hardness increases with the W content, rising from (28.61±0.82) GPa of Cr0.36Al0.64N to (30.87±0.80) GPa of Cr0.34Al0.64W0.02N and (32.37 ± 1.44) GPa of Cr0.32Al0.63W0.05N. W doping reduced the“droplet”defects generated during the cathodic arc evaporation process, with defects decreasing as W content increases. The addition of W suppressed the thermal decomposition of CrAlN coating and enhanced its thermal stability. However, W doping reduced the oxidation resistance of the CrAlN coating. After 15 hours of isothermal oxidation at 1 100 ° C, The oxide layer thicknesses of the Cr0.36Al0.64N, Cr0.34Al0.64W0.02N, and Cr0.32Al0.63W0.05N coatings were approximately 260.6 nm, 359.8 nm, and 445.9 nm, respectively.

关键词

CrAlN涂层 / W掺杂 / 阴极弧蒸发 / 热稳定性 / 抗氧化性

Key words

CrAlN coating / W doping / cathode arc evaporation / thermal stability / oxidation resistance

引用本文

导出引用
吴明晶 张国飞 王北川, 李佳 魏铁峰 陈利, . W掺杂改性CrAlN涂层的微结构及性能. 硬质合金. 2024, 41(5): 385-391
Wu Mingjing Zhang Guofei Wang Beichuan, Li Jia Wei Tiefeng Chen Li, . Microstructures and Properties of W-Doped Modified CrAlN Coatings. Cemented Carbide Cemented Carbide. 2024, 41(5): 385-391

参考文献

[1] 刘喆人. Cr-Al-O-N和(Cr,Al)2O3涂层的结构、力学性能、热稳定性 和抗氧化性研究 [D]. 长沙:中南大学,2023.

LIU Z R. Structure, mechanical property, thermal stability, and oxidation resistance of Cr-Al-O-N and (Cr, Al)2O3 coatings [D]. Changsha: Central South University, 2023. 

[2] KNOTEK O, LO¨FFLER F, SCHOLL H J. Properties of arc-evaporat⁃ ed CrN and (Cr, Al)N coatings [J]. Surface and Coatings Technology, 1991, 45(1-3): 53-58. 

[3] KALSS W, REITER A, DERFLINGER V, et al. Modern coatings in high performance cutting applications [J]. International Journal of Re⁃ fractory Metals and Hard Materials, 2006, 24(5): 399-404. 

[4] SPAIN E, AVELAR-BATISTA J C, LETCH M, et al. Characterisa⁃ tion and applications of Cr-Al-N coatings [J]. Surface and Coatings Tech⁃ nology, 2005, 200(5): 1507-1513. 

[5] 王大辉, 吴明晶, 刘慧君 . Ti0.44Al0.56N 和 Cr0.42Al0.58N 涂层的结构与热性能研究 [J]. 硬质合金, 2020, 37(3): 189-194. 

WANG D H, WU M J, LIU H J. Research on structure and thermal prop⁃ erties of Ti0.44Al0.56N and Cr0.42Al0.58N [J]. Cemented Carbide, 2020, 37 (3): 189-194. 

[6] 王桂云,陈利 . Al 含量对 Cr(1-x) AlxN 涂层力学、热稳定性、抗氧化 性及耐蚀性的影响 [J]. 表面技术,2022,51(2):39-47. WANG G Y, CHEN L. Effect of Al content on the mechanical properties, thermal stability, oxidation resistance and corrosion resistance of Cr1-xAlxN coatings[J]. Surface Technology, 2022, 51(2): 39-47. 

[7] 胡春 . Nb、Ta 和 B 对 CrAlN 涂层结构和性能的影响 [D]. 长沙:中 南大学, 2020. 

HU C. Influence of Nb-,Ta- and B-addition on the structure and proper⁃ ties of CrAlN coatings [D]. Changsha: Central South University, 2020. 

[8] LI W Z, CHEN Q Z, POLCAR T, et al. Influence of Zr alloying on the mechanical properties, thermal stability and oxidation resistance of Cr-Al-N coatings [J]. Applied Surface Science, 2014, 317: 269-277. 

[9] ROVERE F, MAYRHOFER P H, REINHOLDT A, et al. The effect of yttrium incorporation on the oxidation resistance of Cr-Al-N coatings [J]. Surface and Coatings Technology, 2008, 202(24): 5870-5875. 

[10] ROVERE F, MAYRHOFER P H. Thermal stability and thermo-me⁃ chanical properties of magnetron sputtered Cr-Al-Y-N coatings [J]. Jour⁃ nal of Vacuum Science & Technology A Vacuum Surfaces and Films, 2007, 26(1): 29-35. 

[11] QI D, LEI H, WANG T, et al. Mechanical, microstructural and tri⁃ bological properties of reactive magnetron sputtered Cr-Mo-N films [J]. Journal of Materials Science & Technology, 2015, 31(1): 55-64. 

[12] FRANZ R, MITTERER C. Vanadium containing self-adaptive lowfriction hard coatings for high-temperature applications: a review [J]. Sur⁃ face and Coatings Technology, 2013, 228: 1-13. 

[13] HANS M, BABEN M T, MUSIC D, et al. Effect of oxygen incorpora⁃ tion on the structure and elasticity of Ti-Al-O-N coatings synthesized by cathodic arc and high power pulsed magnetron sputtering [J]. Journal of Applied Physics, 2014, 116: 093515. 

[14] KIMBLIN C W. Erosion and ionization in the cathode spot regions of vacuum arcs [J]. Journal of Applied Physics, 1973, 44(7): 3074-3081. 

[15] JÜTTNER B. Erosion craters and arc cathode spots in vacuum [J]. Contributions to Plasma Physics, 2010, 19(1): 25-48. 

[16] 许雨翔. TiAlN基多元和多层涂层的热稳定性 [D].长沙:中南大 学,2017. 

XU Y X. Thermal stability and oxidation resistance of TiAlN-based mul⁃ ticomponent and multilayered coatings [D]. Changsha: Central South Uni⁃ versity, 2017. 

[17] 吴明晶 王北川 张国飞等 . 阴极弧蒸发和高功率脉冲磁控溅射 TiAlN涂层的性能研究 [J]. 硬质合金, 2023, 40(3): 181-186. 

WU M J, WANG B C, ZHANG G F. Research on properties of TiAlN coatings prepared by cathode arc evaporation and high-power impulse magnetron sputtering [J]. Cemented Carbide, 2023, 40(3): 181-186. 

[18] PANJAN P, DRNOVŠEK A, GSELMAN P, et al. Review of growth defects in thin films prepared by PVD techniques [J]. Coatings, 2020, 10 (5): 447. 

[19] MÜNZ W D, LEWIS D B, CREASEY S, et al. Defects in TiN and TiAIN coatings grown by combined cathodic arc/unbalanced magnetron technology [J]. Vacuum, 1995, 46(4): 323-330. 

[20] HOLLERWEGER R, ZHOU L, HOLEC D, et al. Controlling micro⁃ structure, preferred orientation, and mechanical properties of Cr-Al-N by bombardment and alloying with Ta [J]. Journal of Applied Physics, 2016, 119(7): 2114-2122. 

[21] PIERSON H O. Handbook of refractory carbides and nitrides: prop⁃ erties, characteristics, processing, and applications [M]. New Jersey USA: William Andrew/Noyes, 1996. 

[22] BARNA P B, ADAMIK M. Fundamental structure forming phenom⁃ ena of polycrystalline films and the structure zone models [J]. Thin Solid Films, 1998, 317(1): 27-33. 

[23] TSUI T Y, PHARR G M, OLIVER W C, et al. Nanoindentation and nanoscratching of hard carbon coatings for magnetic disks [J]. MRS On⁃ line Proceedings Library, 1995, 383: 447-452. 

[24] YANG B, CHEN L, CHANG K K, et al. Thermal and thermo-me⁃ chanical properties of Ti-Al-N and Cr-Al-N coatings [J]. International Journal of Refractory Metals and Hard Materials, 2012, 35: 235-240. 

[25] MAYRHOFER P, MITTERER C, CLEMENS H. Self-organized nanostructures in hard ceramic coatings [J]. Advanced Engineering Mate⁃ rials, 2005, 7(12): 1071-1082. 

[26] HE L Q, CHEN L, XU Y X, et al. Thermal stability and oxidation resistance of Cr1-xAlxN coatings with single phase cubic structure [J]. Journal of Vacuum Science & Technology A, 2015, 33(6): 061513. 

[27] REITER A E, MITTERER C, SARTORY B, et al. Oxidation of arcevaporated Al1-xCrxN coatings [J]. Journal of Vacuum Science & Technol⁃ ogy A, 2007, 25(4): 711-720.

50

Accesses

0

Citation

Detail

段落导航
相关文章

/